HD74LV574A

Octal D-type Flip-Flops with 3-state Outputs
REJ03D0520-0100
Rev. 1.00
Feb. 01, 2005

Description

The HD74LV574A has eight edge trigger D type flip flops with three state outputs in a 20 pin package. Data at the D inputs meeting set up requirements, are transferred to the Q outputs on positive going transitions of the clock input. When the clock input goes low, data at the D inputs will be retained at the outputs until clock input returns high again. When a high logic level is applied to the output control input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements. Low-voltage and high-speed operation is suitable for the battery-powered products (e.g., notebook computers), and the low-power consumption extends the battery life.

Features

- $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ to 5.5 V operation
- All inputs $\mathrm{V}_{\mathrm{IH}}($ Max. $)=5.5 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right.$ to 5.5 V$)$
- All outputs $\mathrm{V}_{\mathrm{O}}($ Max. $)=5.5 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$
- Typical $\mathrm{V}_{\text {OL }}$ ground bounce $<0.8 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
- Typical V_{OH} undershoot $>2.3 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
- Output current $\pm 8 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to 3.6 V$), \pm 16 \mathrm{~mA}\left(@ \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right.$ to 5.5 V$)$
- Ordering Information

Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
HD74LV574AFPEL	SOP-20 pin (JEITA)	PRSP0020DD-B (FP-20DAV)	FP	EL (2,000 pcs/reel)
HD74LV574ATELL	TSSOP-20 pin	PTSP0020JB-A (TTP-20DAV)	T	ELL (2,000 pcs/reel)

Function Table

Inputs			
$\overline{\mathrm{OE}}$	CLK	D	
H	X	X	Z
L	\uparrow	L	L
L	\uparrow	H	H
L	\downarrow	X	Q_{0}

Note: H: High level
L: Low level
X: Immaterial
Z: High impedance
Q_{0} : Output level before the indicated steady state input conditions were established.

Pin Arrangement

(Top view)

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage range	$V_{c c}$	-0.5 to 7.0	V	
Input voltage range*1	V_{1}	-0.5 to 7.0	V	
Output voltage range**,2	V_{0}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V	Output: H or L
		-0.5 to 7.0		V_{CC} : OFF or Output: Z
Input clamp current	1 IK	-20	mA	$\mathrm{V}_{1}<0$
Output clamp current	lok	± 50	mA	$\mathrm{V}_{\mathrm{O}}<0$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$
Continuous output current	lo	± 35	mA	$\mathrm{V}_{\mathrm{O}}=0$ to V_{CC}
Continuous current through $V_{C C}$ or GND	I_{CC} or $\mathrm{I}_{\text {GND }}$	± 70	mA	
Maximum power dissipation at	P_{T}	835	mW	SOP
$\mathrm{Ta}=25^{\circ} \mathrm{C}$ (in still air) ${ }^{* 3}$		757		TSSOP
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$	

Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This value is limited to 5.5 V maximum.
3. The maximum package power dissipation was calculated using a junction temperature of $150^{\circ} \mathrm{C}$.

Recommended Operating Conditions

Item	Symbol	Min	Max	Unit	Conditions
Supply voltage range	$\mathrm{V}_{\text {cc }}$	2.0	5.5	V	
Input voltage range	V_{1}	0	5.5	V	
Output voltage range	V_{0}	0	$\mathrm{V}_{\text {CC }}$	V	H or L
		0	5.5		High impedance state
Output current	Іон	-	-50	$\mu \mathrm{A}$	$\mathrm{V}_{\text {cc }}=2.0 \mathrm{~V}$
		-	-2	mA	$\mathrm{V}_{\mathrm{CC}}=2.3$ to 2.7 V
		-	-8		$\mathrm{V}_{\mathrm{CC}}=3.0$ to 3.6 V
		-	-16		$\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V
	loL	-	50	$\mu \mathrm{A}$	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$
		-	2	mA	$\mathrm{V}_{\mathrm{CC}}=2.3$ to 2.7 V
		-	8		$\mathrm{V}_{\mathrm{CC}}=3.0$ to 3.6 V
		-	16		$\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V
Input transition rise or fall rate	$\Delta t / \Delta v$	0	200	ns/V	$\mathrm{V}_{\mathrm{CC}}=2.3$ to 2.7 V
		0	100		$\mathrm{V}_{\mathrm{CC}}=3.0$ to 3.6 V
		0	20		$\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V
Operating free-air temperature	Ta	-40	85	${ }^{\circ} \mathrm{C}$	

Note: Unused or floating inputs must be held high or low.

DC Electrical Characteristics
$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$

Item	Symbol	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})^{*}$	Min	Typ	Max	Unit	Test Conditions
Input voltage	V_{IH}	2.0	1.5	-	-	V	
		2.3 to 2.7	$\mathrm{V}_{\mathrm{CC}} \times 0.7$	-	-		
		3.0 to 3.6	$\mathrm{V}_{\mathrm{CC}} \times 0.7$	-	-		
		4.5 to 5.5	$\mathrm{V}_{\mathrm{CC}} \times 0.7$	-	-		
	VIL	2.0	-	-	0.5		
		2.3 to 2.7	-	-	$\mathrm{V}_{\text {CC }} \times 0.3$		
		3.0 to 3.6	-	-	$\mathrm{V}_{\text {cc }} \times 0.3$		
		4.5 to 5.5	-	-	$\mathrm{V}_{\mathrm{CC}} \times 0.3$		
Output voltage	V_{OH}	Min to Max	$\mathrm{V}_{\mathrm{CC}}-0.1$	-	-	V	$\mathrm{I}_{\text {OH }}=-50 \mu \mathrm{~A}$
		2.3	2.0	-	-		$\mathrm{IOH}=-2 \mathrm{~mA}$
		3.0	2.48	-	-		$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$
		4.5	3.8	-	-		$\mathrm{IOH}=-16 \mathrm{~mA}$
	Vol	Min to Max	-	-	0.1		$\mathrm{loL}=50 \mu \mathrm{~A}$
		2.3	-	-	0.4		$\mathrm{l}_{\mathrm{OL}}=2 \mathrm{~mA}$
		3.0	-	-	0.44		$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$
		4.5	-	-	0.55		$\mathrm{loL}=16 \mathrm{~mA}$
Input current	$\mathrm{I}_{\text {N }}$	0 to 5.5	-	-	± 1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND
Off-state output current	loz	5.5	-	-	± 5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND
Quiescent supply current	Icc	5.5	-	-	20	$\mu \mathrm{A}$	$\mathrm{V}_{1 N}=\mathrm{V}_{\text {CC }}$ or $\mathrm{GND}, \mathrm{l}_{0}=0$
Output leakage current	loff	0	-	-	5	$\mu \mathrm{A}$	$\mathrm{V}_{\text {I }}$ or $\mathrm{V}_{0}=0$ to 5.5 V
Input capacitance	$\mathrm{C}_{\text {IN }}$	3.3	-	2.9	-	pF	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{cc}}$ or GND

Note: For conditions shown as Min or Max, use the appropriate values under recommended operating conditions.

Switching Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$

Item	Symbol	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$		Unit	Test Conditions	FROM (Input)	TO(Output)
		Min	Typ	Max	Min	Max				
Maximum clock frequency	$\mathrm{t}_{\text {max }}$	60	105	-	50	-	MHz	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
		50	85	-	40	-		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Propagation delay time	$t_{\text {PLH }}$	-	9.7	16.6	1.0	20.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	CLK	Q
	tpHL	-	11.8	19.6	1.0	23.0		$C_{L}=50 \mathrm{pF}$		
Enable time	$\begin{aligned} & \mathrm{t}_{\mathrm{zH}} \\ & \mathrm{t}_{\mathrm{zL}} \end{aligned}$	-	8.9	16.1	1.0	19.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\overline{\mathrm{OE}}$	Q
		-	10.9	19.0	1.0	22.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Disable time	$\begin{aligned} & \mathrm{t}_{\mathrm{Hz}} \\ & \mathrm{t}_{\mathrm{LZ}} \end{aligned}$	-	6.3	12.8	1.0	15.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\overline{\mathrm{OE}}$	Q
		-	8.2	17.5	1.0	20.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Setup time	tsu	5.5	-	-	5.5	-	ns		Data bef	e CLK \uparrow
Hold time	th_{h}	2.0	-	-	2.0	-	ns		Data after	CLK \uparrow
Pulse width	t_{w}	7.0	-	-	7.0	-	ns		CLK: "H"	r "L"

$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$

Item	Symbol	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$		Unit	Test Conditions	FROM (Input)	TO(Output)
		Min	Typ	Max	Min	Max				
Maximum clock frequency	$\mathrm{t}_{\text {max }}$	80	150	-	70	-	MHz	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
		55	110	-	50	-		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Propagation delay time	$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	-	6.8	13.2	1.0	15.5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	CLK	Q
		-	8.3	16.7	1.0	19.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Enable time	$\begin{aligned} & \mathrm{t}_{\mathrm{zH}} \\ & \mathrm{tzz} \end{aligned}$	-	6.3	12.8	1.0	15.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\overline{\mathrm{OE}}$	Q
		-	7.7	16.3	1.0	18.5		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Disable time	$\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \end{aligned}$	-	4.7	13.0	1.0	15.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\overline{\mathrm{OE}}$	Q
		-	5.9	15.0	1.0	17.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Setup time	tsu	3.5	-	-	3.5	-	ns		Data befo	CLK \uparrow
Hold time	$t_{\text {h }}$	1.5	-	-	1.5	-	ns		Data after	CLK \uparrow
Pulse width	$\mathrm{t}_{\text {w }}$	5.0	-	-	5.0	-	ns		CLK: "H"	"L"

$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$

Item	Symbol	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$		Unit	Test Conditions	FROM (Input)	TO (Output)
		Min	Typ	Max	Min	Max				
Maximum clock frequency	$\mathrm{t}_{\text {max }}$	130	205	-	110	-	MHz	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		
		85	170	-	75	-		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Propagation delay time	$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	-	4.9	8.6	1.0	10.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	CLK	Q
		-	5.9	10.6	1.0	12.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Enable time	$\begin{aligned} & \mathrm{t}_{\mathrm{zH}} \\ & \mathrm{t}_{\mathrm{zL}} \end{aligned}$	-	4.6	9.0	1.0	10.5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\overline{\mathrm{OE}}$	Q
		-	5.5	11.0	1.0	12.5		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Disable time	$\begin{aligned} & \mathrm{t}_{\mathrm{Hz}} \\ & \mathrm{t}_{\mathrm{LZ}} \end{aligned}$	-	3.4	9.0	1.0	10.5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\overline{\mathrm{OE}}$	Q
		-	4.0	10.1	1.0	11.5		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Setup time	tsu	3.5	-	-	3.5	-	ns		Data bef	e CLK \uparrow
Hold time	t_{n}	1.5	-	-	1.5	-	ns		Data after	CLK \uparrow
Pulse width	t_{w}	5.0	-	-	5.0	-	ns		CLK: "H"	r "L"

Output-skew Characteristics

Item							$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
	Symbol	$\mathrm{V}_{\mathrm{cc}}=(\mathrm{V})$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		Ta $=-40$ to $85^{\circ} \mathrm{C}$		Unit
			Min	Max	Min	Max	
Output skew	$\mathrm{tsk}_{\text {(0) }}$	2.3 to 2.7	-	2.0	-	2.0	ns
		3.0 to 3.6	-	1.5	-	1.5	
		4.5 to 5.5	-	1.0	-	1.0	

Note: Skew between any outputs of the same package switching in the same direction. This parameter is warranted but not production tested.

Operating Characteristics

Item	Symbol	$\mathrm{V}_{\mathrm{cc}}=(\mathrm{V})$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			Unit	Test Conditions
			Min	Typ	Max		
Power dissipation capacitance	$\mathrm{C}_{\text {PD }}$	3.3	-	21.1	-	pF	$\mathrm{f}=10 \mathrm{MHz}$
		5.0	-	22.8	-		

Noise Characteristics

Item	Symbol	$\mathrm{V}_{\mathrm{cc}}=(\mathrm{V})$				Unit	Test Conditions
			$\mathrm{Ta}=25^{\circ} \mathrm{C}$				
			Min	Typ	Max		
Quiet output, maximum dynamic $V_{O L}$	$\mathrm{V}_{\mathrm{OL}(\mathrm{P})}$	3.3	-	0.6	0.8	V	
Quiet output, minimum dynamic $V_{\text {OL }}$	$\mathrm{V}_{\text {OL (}}$ V)	3.3	-	-0.5	-0.8	V	
Quiet output, minimum dynamic V_{OH}	$\mathrm{V}_{\mathrm{OH}}(\mathrm{V})$	3.3	-	2.9	-	V	
High-level dynamic input voltage	$\mathrm{V}_{\text {IH (}}$ ()	3.3	2.31	-	-	V	
Low-level dynamic input voltage	VIL (D)	3.3	-	-	0.99	V	

Test Circuit

Note: C_{L} includes the probe and jig capacitance.

Notes: $1 . \mathrm{t}_{\mathrm{r}} \leq 3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 3 \mathrm{~ns}$
2. Input waveform: $\mathrm{PRR} \leq 1 \mathrm{MHZ}$, duty cycle 50%
3. Waveform-A is for an output with internal conditions such that the output is low except when disabled by the output control.
4. Waveform-B is for an output with internal conditions such that the output is high except when disabled by the output control.

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Blidg, 2-6--2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
2. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
3. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
4. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
5. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
6. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.

7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
Unit2607 Ruijing Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

